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Abstract
We describe STELLA,1 a strongly typed, object-oriented,
Lisp-like language, designed to facilit ate symbolic
programming tasks in artificial intelli gence applications.
STELLA preserves those features of Common Lisp deemed
essential for symbolic programming such as built -in support
for dynamic data structures, heterogeneous collections, first-
class symbols, powerful iteration constructs, name spaces,
an object-oriented type system with a meta-object protocol,
exception handling, and language extensibilit y through
macros, but without compromising execution speed,
interoperabilit y with non-STELLA programs, and platform
independence. STELLA programs are translated into a
target language such as C++, Common Lisp, or Java, and
then compiled with the native target language compiler to
generate executable code. The language constructs of
STELLA are restricted to those that can be translated
directly into native constructs of the intended target
languages, thus enabling the generation of highly eff icient
as well as readable code.

Introduction
From its inception about 40 years ago, Lisp was intended
specifically to support the writing of artificial intelli gence
(AI) software (McCarthy 1981), and it has been one of the
most popular AI programming languages ever since.
However, despite its high level of maturity, for example,
the existence of standards for major dialects such as
Common Lisp and Scheme and the emergence of an
international standard for ISLISP, it has not become a
mainstream programming language such as C, C++ or,
lately but quickly, Java. This is one of the reasons why it is
generally diff icult to deliver Lisp libraries or applications
that smoothly interoperate with standard non-Lisp
software, such as, for example, GUI tools, commercial off-
the-shelf software, tool li braries, etc.  Other reasons are the
technical nature and size of Lisp implementations (in
particular for feature-rich dialects such as Common Lisp),
as  well as the lack of Lisp knowledge in the general non-
AI programming community. Balzer (1990) conjectures
that AI’ s lack of impact on real world software engineering
is due to its isolationist technology and approaches
manifested by its use of idiosyncratic languages (Lisp),
                                                
1 “STELLA” is an acronym for Strongly TypEd Lisp-like LAnguage.

idiosyncratic environments, and  idiosyncratic hardware
(now extinct Lisp machines).

From the standpoint of AI this is very unfortunate,
since, on the one hand, Lisp is extremely well suited for
symbolic programming tasks commonly found in AI. For
example, Shrobe (1996) argues that the AI community still
needs Lisp because of its dynamic nature and rich
development environments that facilit ate rapid prototyping,
as well as for its unique support for creating and
embedding new domain or problem-specific languages. On
the other hand, the success of AI as perceived outside of
the field is more and more linked to the successful fielding
of AI technology in non-AI settings, and, since this success
depends heavily on the technical and commercial viabilit y
of the programming languages used, we claim that Lisp is
an increasingly less suitable choice.

When the second author embarked on the project of
developing a large knowledge representation system that
had to be delivered in C++, he was faced exactly with the
dilemma described above: the symbolic programming
nature of the project strongly favored Common Lisp while
“ real world” constraints demanded C++. The solution was
the development of a new language called STELLA, which
preserves those features of Common Lisp deemed essential
for symbolic programming, but without compromising
execution speed, interoperabilit y with non-STELLA
programs, and platform independence.

The motivation for the development of the language
Dylan (Shalit 1996) was very similar, namely, to preserve
the best features of Common Lisp without compromising
the abilit y to generate tight and eff icient application
programs. Scott Fahlman who has been involved in the
development of Common Lisp as well as Dylan writes that
“ if Dylan becomes popular for mainstream applications, it
will free AI and expert system programmers from having
to choose between li fe in the Lisp ghetto or the C++
minefield” (Shrobe  et al.   1996, p.12). But the question is:
will it become popular?

We do not venture a bet on the answer to this
question. Instead, STELLA takes a safer approach by using
a translation scheme that can deliver STELLA programs in
three already established and widely accepted languages.
Even if STELLA does not become a mainstream language
– which is quite likely – it can still deliver on its promise of
making AI applications available to the programming
mainstream in a way that was not previously possible.



An Overview of STELLA

STELLA is a strongly typed, object-oriented, Lisp-like
language. STELLA  programs are first translated into
either Common Lisp, C++, or Java, and then compiled with
any conventional compiler for the chosen target language
to generate executable code.  Figure 1 gives an overview of
the STELLA system architecture. Over 95% of the
STELLA system is written in STELLA itself, which is the
reason for the circular arc emanating from the translator.

The design of STELLA borrows from a variety of
programming languages, most prominently from Common
Lisp (Steele 1990), and to a lesser degree from other
object-oriented languages such as Eiffel (Meyer 1992),
Sather (Stoutamire & Omohundro 1996), and Dylan (Shalit
1996).  Since STELLA has to be translatable into C++
(Stroustrup 1991) and Java (Gosling, Joy, & Steele 1996),
various restrictions of these languages also influenced its
design.

In the following, we assume that the reader is famili ar
with basic Common Lisp concepts, and has at least some
famili arity with C++ or Java. Let us start with a cursory
overview of STELLA’s main features:
Syntax: STELLA uses a parenthesized, uniform
expression syntax similar to Lisp. Most definitional
constructs and control structures are similar to their
Common Lisp analogues with variations to support types.
Type system: STELLA is strongly typed and supports
eff icient static compilation similar to C++. Types are
required for the arguments and return values of functions
and methods, for global variables, and for slot definitions.
Local, lexically scoped variables can be typed implicitly by
relying on type inference.
Object system: Types are organized into a single
inheritance class hierarchy. Restricted multiple inheritance

is allowed via mixin classes. Dynamic method dispatch is
based on the runtime type of the first argument (similar to
C++ and Java). Slots can be static (native) or dynamic.
Dynamic slots can be defined at runtime and do not occupy
any space until they are fill ed. Slots can have both initial
and default values, and demons can be triggered by slot
accesses. A meta-object protocol allows the control of
object creation, initialization, termination, and destruction.
Control structure: Functions and methods are
distinguished. They can have multiple (zero or more)
return values and a variable number of arguments. Lisp-
style macros are supported to facilit ate syntax extensions.
Expressions and statements are distinguished. Local
variables are lexically scoped, but dynamically scoped
variables (specials) are also supported. STELLA has an
elegant, uniform, and eff icient iteration mechanism plus a
built -in protocol for iterators. An exception mechanism can
be used for error handling and non-local exits.
Symbolic programming: Symbols are first-class objects,
and extensive support for dynamic datatypes such as cons-
trees, lists, sets, association lists, hash tables, extensible
vectors, etc., is available. A backquote mechanism
facilit ates macro writing and code generation. Interpreted
function call , method call , slot access, and object creation
is supported, and a restricted evaluator is also available.
Name spaces: Functions, methods, variables, and classes
occupy separate name spaces (i.e., the same name can be
used for a function and a class). A hierarchical module
system compartmentalizes symbol tables and supports
large-scale programming.
Memory management: STELLA relies on automatic
memory management via a garbage collector.  For Lisp
and Java the native garbage collector is used.  For the C++
version of STELLA we use the Boehm-Weiser
conservative garbage collector (Boehm 1993) with good
results.  Various built -in support for explicit memory
management is also available.

The Common Lisp features most prominently absent
from STELLA are anonymous functions via lambda
abstraction, lexical closures, multi -methods, full -fledged
eval (a restricted evaluator is available), optional and
keyword arguments, and a modifiable readtable.  STELLA
does also not allow dynamic re/definition of functions and
classes, even though the Lisp-based development
environment provides this facilit y (similar to Dylan). The
main influences of C++ and Java onto STELLA are the
strong typing, limited multiple inheritance, first-argument
polymorphism, and the distinction between statements and
expressions.

Translation Instead of Compilation

Maybe the most important characteristic of STELLA that
distinguishes it from other approaches to the problem of
Lisp-based application generation and interoperabilit y is its
translation philosophy. One of the main design goals has
been to allow a direct translation into readable,
conventional, and efficient code of the various target

Figure 1: STELLA system architecture
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languages that can be compiled with conventional
compilers, since that achieves the highest degree of
platform independence and interoperabilit y with non-
STELLA programs without sacrificing eff iciency.
Readabilit y is of primary concern, since it enables a
STELLA-illit erate application programmer to effectively
and eff iciently integrate some mainstream application with
a piece of AI technology written in STELLA.
Conventional Lisp-to-C translators are an inferior
alternative, since they use C more like an assembly
language which makes it diff icult to access and understand
underlying data and control structures. Integration
approaches based on foreign function interfaces or
protocols such as CORBA sacrifice eff iciency, since they
require data conversions or various layers of protocol.

When a STELLA program is translated into Common
Lisp, C++,  or Java, classes are mapped onto classes, slots
onto slots, methods onto methods, functions onto functions
(or static methods), etc. Native datatypes are used
whenever possible, for example, STELLA strings become
Lisp or C++ strings, integers are mapped onto integers, etc.
This is ill ustrated by Figure 2 which shows a very simple
STELLA function and its translations into Common Lisp
and C++. Both translations are very direct and straight-
forward. In the Common Lisp translation all functions used
from the Lisp package are quali fied with the CL package
prefix.  Note, that for Lisp all type information is dropped
(at higher optimization levels some type information is
retained – sacrificing some readabilit y - to provide
optimization hints to the Lisp compiler).  The C++
translation is even more similar to the original STELLA
code (the C++ pretty-printing in this and all following
examples has been changed slightly to save vertical space).

Note, that both the return value and the parameter of
the STELLA function are explicitly typed. Since STELLA
distinguishes between statements and expressions (similar
to C++), the STELLA if does not return a value; hence,
function values are returned via explicit calls to return.

The direct mapping between STELLA and the target
languages not only serves readabilit y but also eff iciency.
For example, in the C++ translation function calls do not
require an extra indirection through a function cell , method
calls use the very eff icient C++ v-table mechanism, and
slot access is almost as eff icient as the access to local
variables. These are all areas where the expressiveness and
dynamic nature of Common Lisp has to be paid for with a
loss of eff iciency.

The STELLA Type System

The most fundamental difference between STELLA and
Common Lisp is that STELLA is strongly typed. While
Common Lisp does have a full -fledged and complex type
system, type declarations for functions and variables are
completely optional. Moreover, a Common Lisp compiler
is free to ignore any user provided type declarations, which
discourages programmers to provide them in the first place
(if they are not discouraged already by the somewhat

arcane declaration syntax). Most Lisp programmers regard
the untyped nature of Common Lisp as a feature that
facilit ates rapid prototyping and only provide type
information if they hope for a particular optimization by
the compiler.

Since STELLA is aimed to be directly translatable
into strongly-typed languages such as C++ or Java, it has
to have a type system that can be mapped more or less
directly onto the type systems of these target languages.
Strong typing might seem unpalatable to many Lisp
programmers accustomed to a programming style that does
not rely on explicit typing; however, we will show that
STELLA’s sophisticated type system combined with its
type inference mechanism allows one to get away with a
minimum of explicit type declarations while still reaping
the safety and performance benefits of a strongly typed
language.

Types in STELLA can be categorized into literal
types such as INTEGER or STRING, and object (or non-
literal) types such as OBJECT, LIST, or SYMBOL. This
corresponds roughly to the distinction between primitive
and reference types in Java. In the simplest case, a type
corresponds to a class. For example, the following class
definition creates the type PERSON:

By convention, we upcase type names, even though this
usually does not matter, since by default STELLA is  case-
insensitive. The class  definition shown above uses a
nested keyword/value syntax similar to the defclass
macro of the Common Lisp Object System (CLOS), but
with a different set of option keywords. It defines the new
class (or type) PERSON as a subclass of the class
OBJECT. In fact, OBJECT is the top of the STELLA
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Figure 2: A simple STELLA function and its translations
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object type hierarchy, thus, every object type used by
STELLA is a subtype of it. Every instance of PERSON has
exactly the storage slots shown above with their respective
types (there are no slots inherited from OBJECT). Here is
the C++ version of this class to again ill ustrate the
readabilit y of the translation:

Every class definition usually also generates various
auxili ary functions and methods such as the
primary_type method shown above which facilit ates
runtime type determination.

Apart from simple types such as PERSON, STELLA
also has parameterized and anchored types. Parameterized
types instantiate parameterized classes. This mechanism
provides a kind of polymorphism that is commonly used to
implement generic containers, such as, for example, a list
datatype that can take arbitrary elements of some
parameter type T. Instead of having to provide multiple
definitions for the container class and its associated
functions and methods – one for each individual element
type that is needed by a particular application – it suff ices
to provide a single parameterized definition. For example,
the STELLA kernel class LIST which implements a
dynamic, singly-linked list datatype is defined as follows:

The :parameters keyword is used to parameterize a
class definition. In the given example, the class LIST has
one parameter with name any-value. Its type,
OBJECT, serves as a constraint on the parameter types that
can legally instantiate the class. Parameterized types have
the syntax  (T OF P1 ... Pn) where T is called the base type
and the Pi are called the parameter types. Each parameter
type has to be a subtype of the type that constrains the
corresponding parameter. For example, the type (LIST
OF PERSON) is a legal instantiation of LIST. The base
type T can also be used by itself, in which case the Pi are
assumed to be of the type of the corresponding class
parameter; thus,  the type LIST is equivalent to the
parameterized type (LIST OF OBJECT). A
parameter type can itself be parameterized, therefore
allowing arbitrarily nested type expressions.

STELLA lists simply add a header element to a more

low-level Lisp-style CONS-list which is stored in the slot
the-cons-list (the somewhat complicated type
specification of that slot will be explained shortly). Armed
with all that, we can now extend  the PERSON class
defined above to also account for a person’s siblings:

Providing such detailed type information not only
documents the intent of the programmer, it also enables the
STELLA translator to verify the integrity of accesses to a
particular person’s siblings slot. For example,
whenever a new sibling is added via a call to the STELLA
method insert, the translator can verify at compile time
whether the inserted element is indeed of type PERSON.
Conversely, whenever a sibling element is retrieved from
the list, the STELLA translator knows that it has to be of
type PERSON, and it can use that knowledge for type
inference and to generate the necessary type conversions in
the target language.

The concept of anchored types was borrowed from
Eiffel (Meyer 1992). Anchored types can be used to
provide a type by pointing  to the type of some other typed
entity (called the anchor) instead of explicitly duplicating
the anchor’s type information (this mechanism is
somewhat similar to symbolic links in a file system).
Anchored types serve two main functions: (1) to avoid
redundant duplication of type information (which
facilit ates code maintenance), and (2) to declare
dependencies between types (which assists type inference).

Anchored types have the syntax (LIKE anchor)
where the syntax of anchor depends on the context of the
declaration. For example, in the definition of the class
LIST given above, the type of the slot the-cons-list
uses an anchored type as a parameter type. The anchor
(any-value self) refers to the type of the class
parameter any-value (self is a special keyword that
refers to the class in whose context the definition occurs).
Since the anchor points to a class parameter, the parameter
type of the-cons-list gets effectively linked to the
parameter type of the LIST class. For example, when the
STELLA translator analyzes the expression  (the-cons-
list (siblings p)) which accesses the slot the-
cons-list of the siblings li st of some person p, it
can infer that its type must be (CONS OF PERSON).

Explicit, Implicit, and Inferred Types
In STELLA all globally visible type information of a
translation unit such as a class, function, method, or global
variable has to be provided explicitly. This contractual
information visible to the outside is often called an entity’s
signature. For example, all of a function’s argument and
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return values have to be typed explicitly, all slots of a class
have to be typed, etc.

The types of local variables, on the other hand, can be
provided implicitly or by relying on type inference. If  a
local variable is not typed explicitly, it is assumed to be of
the type of its initialization argument. For example: let us
assume that a person’s siblings are ordered from oldest to
youngest, and that a suff iciently fine-grained age
representation is used. Then the predicate below returns
true if its argument is a family’s first-born child:

Both local variables s and os introduced by the let
statement above are untyped, hence, STELLA implicitly
types them from their initialization arguments (note: the
STELLA let initializes its variables sequentially similar
to the Common Lisp let*). The type of s is assumed to
be (LIST OF PERSON), since that is the type of the
siblings slot of a PERSON. The determination of the
type of os is slightly more complicated. A STELLA
CONS-cell has two slots, value and rest, which
correspond to the CAR and CDR of a Lisp cons-cell . If
nothing else is known, the value slot of a CONS cell i s of
type OBJECT. However, in this case STELLA can actually
infer a narrower, more specific type than that. Remember,
that the type of the slot the-cons-list of the class
LIST defined above was anchored to the type of the class
parameter; hence, the type of the expression (the-
cons-list s) is inferred to be (CONS OF
PERSON). The value slot of a CONS cell i s typed as
(LIKE (any-value self)), that is, it also is
anchored to the parameter of its class; thus, the type of the
expression (value (the-cons-list s)) is inferred
to be PERSON which is the type STELLA assumes for the
variable os. Here is how these types manifest themselves
in the C++ translation:2

In the translation of s the parameter type information is
dropped. Instead, type information inferred by STELLA
but not available to C++ or Java is communicated via
explicit, static type casts as used in the initialization of os.
This cast is necessary, since the type of the value slot as
known by C++ or Java is OBJECT. In C++ these casts do
                                                
2 In the translation of the function name characters that are
ill egal in C++ identifiers were replaced by legal substitutes.

not incur any runtime overhead, since we can translate
STELLA classes into a single, virtual inheritance C++
class hierarchy.  Unfortunately, Java is not quite as trusting
and checks casts at runtime for their validity (somewhat
similar to the runtime type checking in Lisp).  We do not
yet know how much overhead these runtime type checks
actually incur, however, since Java lacks parametric types,
every use of a generic collection data structure such as
Java’s built -in vectors forces the programmer to use
explicit casts.  For this reason, Java translations of
STELLA code should not behave significantly different in
this respect than manually written Java code.

For the sake of the example above, we exposed the
representation of the underlying list representation. A
better and more elegant implementation would use only a
single local variable and STELLA’s generic first
method to access the oldest sibling. This would then allow
us to change the underlying representation of the
siblings slot, for example, to use a vector instead of a
list, without having to perform any maintenance on the
function first-born? at all . Besides relieving the
programmer from the burden of explicit typing, one of the
most important benefits of implicit typing and type
inference is its support for automatic software
maintenance.  Since fewer types are actually materialized
in the code, changing a type will syntactically affect fewer
places.  In traditional languages, the same insulation can
only be achieved with help of user-defined “ logical” types.
The caveat is that type changes can also indicate semantic
changes, in which case implicit typing can make it more
diff icult to find all the affected places.  Implicit typing and
type inference is also a crucial ingredient of STELLA’s
elegant iteration facilit y described below.

Implicit typing is not always suff icient.  For that case
STELLA let declarations do take an optional type
argument that can be used to override an inferred type, or
to provide a type if a variable is initialized to the typeless
NULL value.

Other Benefits of the STELLA Type System
Besides aiding type checking and eff icient translation, the
STELLA type system also provides various other benefits.
For example, in a language such as Java that does not have
parameterized types, the type checks and explicit casts
generated by the STELLA translator would have to be
performed manually by the programmer, which is tedious,
error prone, and leads to ineff icient and hard to maintain
code (see (Myers, Bank, & Liskov 1997) for a discussion
of parameterized types, and how they could be added to
Java). In C++ we could have used templates, but those
usually implement genericity by code duplication, e.g., by
generating a different version of the first method for
each different parameter type it is used on. STELLA can
achieve the same effect more elegantly with only a single
implementation of first.

Even Common Lisp could benefit from parameterized
types, since there it is the sole responsibilit y of the
programmer to verify that the type contract of the
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siblings slot does not get violated. If s/he was not
careful in doing so, s/he will eventually be disciplined by
the Lisp debugger.  As an added benefit, STELLA’s type
system facilit ates the generation of more eff icient Lisp
code.  As mentioned above, at higher optimization levels
the STELLA-to-Lisp translator retains some type
information to enable optimizations by the Lisp compiler.
Lisp array access and integer arithmetic can benefit greatly
from such declarations, in particular, since the translator
also types intermediate expressions which even type-aware
Lisp programmers often overlook.

The type system also supports automatic type
conversions that would otherwise have to be done
tediously by hand. For example, literals such as numbers or
strings have to be wrapped (objectified) before they can be
stored in generic containers such as vectors or lists.
Because of the available type information, STELLA can
perform the necessary conversions fully automatically.

Iteration

STELLA has a powerful iteration facilit y that provides
eff icient and extensible iteration over arbitrary collections
in a uniform syntax that is inspired by Common Lisp’s
loop macro. For example, the following is a revised
version of the first-born? function that does not rely
on any ordering of the siblings slot:

This version is highly preferable over the previous one,
since it does not expose the representation of the
siblings slot. The STELLA foreach uses a uniform
syntax for iteration regardless of the type of the underlying
collection. Such collections can be lists, association lists,
strings, vectors, integer intervals, STELLA or user-defined
iterators, etc. This means that we could change the
definition of the PERSON class to, for example, use a
vector instead of a list representation for the siblings
slot, without having to adapt the function above. In this
respect the Common Lisp loop macro is clearly inferior,
since it exposes the datatype of the underlying collection by
requiring different keywords to indicate the collection type.
This is a case where the lack of type information in
Common Lisp compromises elegance as well as
maintainabilit y. The uniformity of foreach does not
affect the eff iciency of the generated code. For example,
here is the C++ translation of the function above:

The STELLA translator optimizes iteration over various
commonly used collection data structures; hence, the
generated iteration over the underlying CONS-list data
structure is about as eff icient as one could write it by hand.
Note, how type inference is crucial here to automatically
type the loop variable and the helper variable iterI 001 p
STELLA also supports parallel iteration over two or more
collections, collection of results into a result li st,
destructive modification of the underlying collection data
structure, and the foreach variants someq exists q
and forallp For example, here is another version of the
function first-born?:

The generated iteration that implements the exists
predicate above is as eff icient as the previously shown
foreach loop; however, since the generated loop is a
statement rather than an expression, it cannot be an
argument to the return operator which expects a value
returning expression. To translate this, STELLA uses a
special construct called VRLET (for value-returning let)
which percolates the procedural code outwards, saves its
result value in a temporary variable, and folds the return
expression inside. The resulting translation is very
eff icient, but it is not quite as close to the source code as
was the case in previous examples. This is one of the few
cases where readabilit y of the generated translation has
been somewhat sacrificed for the sake of expressiveness.

STELLA uses iterators to facilit ate iteration over
arbitrary data structures. A variety of built -in iterators are
provided, for example, the following loop iterates over all
classes in a module:

Here is the corresponding C++ translation which uses a
next? method (translated as nextP) to bump the iterator,
and its value slot to access the current loop value
(iterators can have more than one value):
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The iterator protocol is part of the STELLA language
definition which enables the user to use standard
foreach-style iteration to iterate over arbitrary user-
defined data structures. If a foreach is used on a
collection that is neither  an iterator nor one of the built -in
STELLA collections, a standard method allocate-
iterator is called on it to convert it into an iterator.
This method can be specialized by the user to allocate
iterators on any user-defined data structures.

Runtime Type Inference

Not always is it possible or convenient to rely on static
type information alone. In particular, the handling of
heterogeneous collections is a somewhat thorny issue in
statically typed languages such as C++, while it is rather
effortless in Common Lisp. Since such collections are
sometimes needed, e.g., to store the results of reading and
parsing user input, STELLA provides a runtime type
system that can be used to determine object types and
subtype relationships at runtime. A Lisp-like typecase
construct makes it particularly convenient to encode
specialized processing based on an object’s type. Purists of
the object-oriented programming persuasion might frown
upon such programming style, but we believe that the
resulting code is often cleaner and easier to understand
than equivalent code that relies solely on standard object-
oriented means such as dynamic method dispatch. It also
allows one to avoid high-level catch-all methods which in
C++ are somewhat space ineff icient, because of the nature
of its  method dispatch mechanism.

Rapid Prototyping

Since evolutionary development is such an essential
ingredient of AI programming, an important question to
answer is how well STELLA supports this particular
programming style. One important contribution is how it
minimizes the need for code maintenance. For example, its
uniform iteration syntax allows one to experiment with
different collection representations without having to
maintain associated iteration code. Its uniform syntax for
function call , method call , and slot access makes it
possible, for example, to change a method into a function
or a storage slot into an access method without having to
change any of the call sites of the function or slot
(provided, the basic signature has not changed). In C++
this is not the case, since it exposes the type of an entity by
the syntax that is used. Type inference also plays an
important role by automatically maintaining the types of
local variables. STELLA places minimal restrictions on the
placement of declarations by utili zing a two-pass
translation scheme. This enables the programmer to
position definitions where they most naturally belong,
without having to use redundant forward declarations. The
biggest support for rapid prototyping, however, comes
from leveraging existing Lisp development environment
technology which provide powerful hypercode

environments for incremental code development. In such
environments it is possible to incrementally define and
redefine STELLA functions and classes by piggybacking
on the dynamic nature of Lisp, even though this feature is
not directly addressed by the STELLA language itself.
STELLA provides a set of Lisp macros for the definition of
functions, classes, etc. which call the STELLA translator
behind the scenes and then send the resulting translation to
the underlying Lisp system for evaluation or compilation.
This allows one to use the exact same incremental code
development process as is common for standard Lisp code,
such as evaluation or compilation from an editor buffer,
changing definitions on-the-fly during debugging, looking
up source code, automatic code indentation, etc.  Once
development has completed, one can “push a button” to
generate a final C++ or Java production version of the
program.

Discussion

To date we have written approximately 70000 lines of
STELLA code and successfully released Common Lisp
and C++ versions of the knowledge representation system
that motivated the development of STELLA. We feel that
STELLA development is almost as effortless as Lisp
development, and that it would have been vastly more
diff icult and tedious to write the system directly in C++ or
Java. Maybe the most convincing evidence for the
readabilit y of the translated STELLA code is that we are
able to use standard Lisp, C++ and Java debuggers and
inspectors to debug STELLA code and inspect its data
structures. The safety benefits of the type system have
proven to outweigh by far the additional burden it puts on
the programmer. Being both veteran Lisp programmers, we
now miss the STELLA type system when we write the
occasional Lisp program directly. On average, the C++
translation of a STELLA program runs about three to five
times faster than its Lisp translation which executes
roughly isomorphic code. This speed difference is mainly
explained by the somewhat less eff icient slot access and
method dispatch of CLOS. In fairness to Lisp we have to
say that the nature of the Lisp translations generated by
STELLA put it somewhat at a disadvantage compared to
programs that were written for Lisp directly.  The Java
translations run about as fast as Lisp, but the Java translator
has been completed only recently, and we expect to be able
to significantly improve the performance of the generated
code. The implementation of STELLA is fairly complete,
but a few features still need finishing, and a few language
issues still need to be tidied up.

Conclusion

STELLA demonstrates that it is possible to smoothly
integrate strong typing and the Lisp programming
paradigm. Apart from facilit ating the translation into other
strongly-typed languages, the STELLA type system
combined with its type inference facilit y also proves to be



an important tool to aid the programmer in the process of
rapid development and maintenance of AI software. Many
of Common Lisp’s features were found essential to
symbolic programming and also made their way into
STELLA. Most prominently absent is Lisp’s support for
dynamic redefinition, which mainly aids code development
(which is where it is also exploited for STELLA), but
rarely is needed in a finished application.
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